Primary versus Secondary voice prosthesis fitting

- Comparison of primary and secondary voice prosthesis fitting
- Evaluation of TE puncture with primary voice prosthesis fitting
- Tracheoesophageal puncture stability and resizing
Preface

This document contains a bibliography and summaries of selected publications relating to primary voice prosthesis fitting (i.e. immediately after the tracheoesophageal puncture) versus secondary voice prosthesis fitting (i.e. delayed until several days or weeks after the tracheoesophageal puncture). The document is part of a growing, and regularly updated collection of documents, the Atos Medical Clinical Evidence Series, covering various clinical topics related to Atos Medical’s areas of expertise. The topics are chosen based on questions that we receive from our customers.

Examples of available topics are:
- Laryngectomy and Reflux
- Primary versus Secondary TE puncture

If you would like to receive a list of all currently available topics, if you are interested in any of the topics listed above, or if you have a suggestion for additional topics, please contact your local Atos Medical representative. Due to International Copyright law, we cannot provide full-text publications of the references. If a publication is available online via ‘Open Access’ the link is provided in the document. Otherwise, please refer your customer to his or her medical library.
Table of content

Preface .. 2
Table of content .. 3
Comparison of primary and secondary voice prosthesis fitting .. 4
 Lukinovic et al, 2012 .. 5
 Cleveland Clinic, 2011 ... 6
 Sidell et al, 2010 ... 8
 Brown et al., 2003 ... 9
Evaluation of TE puncture with primary voice prosthesis fitting ... 10
 Bergeron et al, 2014 .. 12
 Damrose et al, 2014 .. 13
 Hilgers et al., 2013 .. 14
 Lorenz et al, 2013 ... 16
 Divi et al, 2011 .. 17
 Deschler et al, 2011 .. 18
 Gultekin et al, 2010 .. 19
 Deschler et al, 2009 .. 20
Tracheoesophageal puncture stability and resizing .. 21
 Lundy et al, 2012 ... 22
 Sidell et al, 2010 ... 23
 Mäkitie et al, 2003 ... 24
 Elving et al, 2002 .. 25
 Schäfer et al, 2001 ... 26
 Op de Coul et al, 2000 ... 27
 Leder and Sasaki, 1995 .. 29
Comparison of primary and secondary voice prosthesis fitting

When creating a tracheoesophageal puncture, the surgeon can choose to place the voice prosthesis during the procedure (primary fitting) or place the voice prosthesis several weeks after the procedure (secondary fitting). In the latter case the puncture is stented with a catheter for several days, until the voice prosthesis is fitted.

The most important benefits of primary fitting are early familiarity with voice prosthesis and maintenance, and immediate voice rehabilitation after healing with related social benefits. Primary fitting enables faster and more successful postoperative voicing when compared to secondary fitting.

Medical benefits reported for primary fitting are fewer post discharge emergency room visits, diminished risk for TE wall separation (due to use of retrograde insertion techniques), better stabilization of the TE wall by flanges of voice prosthesis, reduced irritation of stoma/fistula due to the absence of a catheter in puncture tract, significantly less voice prosthesis size changes, and fewer SLP visits for TEP adjustments. Also important is that with primary fitting, there is no interference of the catheter with the laryngectomy tube and the voice prosthesis flanges protect the puncture tract against reflux/saliva. Finally, with primary fitting, postoperative application of an HME system is not complicated by the presence of a catheter, thus providing the patient with optimal pulmonary care.

Primary fitting of the voice prosthesis has been the standard of care in most European countries for many decades. Presumably due to the growing evidence in literature, in countries where in the last decades surgeons traditionally chose for a secondary fitting, primary fitting of voice prostheses is becoming more popular.

The publications listed below concern the publications regarding comparison of primary and secondary voice prosthesis fitting that are referenced above. Clicking the link while holding the Ctrl key will take you directly to the summary you are interested in.

Introduction
Tracheoesophageal (TE) voice has become the preferred choice of speech rehabilitation. Voice rehabilitation is possible as early as a few days after the surgery, which contributes to the patient’s psychological recovery. Despite the simplicity of the method of TE puncture, it is very important to provide a thorough assessment of the patient to determine whether he is a candidate and the timing of placement.

The aim of this study was to determine and compare the success of the voice prosthesis rehabilitation in patients belonging to different groups formed according to age, irradiation status and timing of prosthesis insertion.

Subjects and Methods
Voice prostheses were inserted in 100 patients in the ENT Department, University Hospital Center Zagreb, from January 2004 until February 2011, and 91 of these patients were included in this study. Seventy-one had a secondary insertion, 20 had a primary insertion. Voice rehabilitation was initiated the 10th day after primary insertion and the 1st-3rd day after secondary insertion. The postoperative voice quality was compared using five degree scales.

Results
Rehabilitation was successful in 75.8% of the patients, 90% with primary insertion and 71% with secondary insertion. Early complication rate was 4.4%, and 10.9% of patients had late complications. Out of 14 patients that had some complication during the postoperative period, 11 were finally successfully rehabilitated. Statistical analysis did not show significant differences regarding the complications rate and success rate of rehabilitation between groups of patients, formed according to age, irradiation status and timing of prosthesis insertion.

Conclusions
Tracheoesophageal puncture with the insertion of a voice prosthesis remains the most successful rehabilitation method following total laryngectomy. Successful rehabilitation was higher with primary insertion, although there was no significant difference with secondary insertion. The results are similar to the results of another retrospective study (Brown et al. 2003, discussed in this document).

“...the elimination of the TEP catheter stenting has significantly reduced complications, restored speech by the first speech pathology visit, and virtually eliminated post-operative ER visits.”

Authors
Dept of Speech Language Pathology

Affiliation(s)
Cleveland Clinic, Head and Neck Institute, Cleveland, Ohio, USA.

Journal and year of publication
Cleveland Clinic, Head and Neck Institute, Outcomes 2011.

Type of publication
Online publication

Link (see p 28)

Introduction
Primary tracheoesophageal puncture (TEP) voice restoration has been a highly successful and cost-effective approach to re-establishing voice and speech in laryngectomized patients at Cleveland Clinic since the early 1990s. In 2011, as an effort to improve patient comfort and early speech outcomes, the Head & Neck Institute modified the traditional approach of using a red rubber catheter to stent the newly created TEP and to facilitate tube feeding during the early post-operative phase. Instead, they began by placing the initial voice prosthesis during the TEP surgery.

Subjects and methods
Twenty laryngectomized patients, 9 with immediate placement during TEP surgery and 11 using the red rubber catheter.

Results
Preliminary findings for this different approach suggest that the elimination of the TEP catheter stenting has significantly reduced complications, restored speech by the first speech pathology visit, and virtually eliminated post-operative ER visits.
Conclusion
Primary voice prosthesis fitting increases the possibility to speak at first visit, decreases reports of discomfort/pain at puncture site, and decreases ER visits after discharge.
Sidell et al, 2010

Title
Improved tracheoesophageal prosthesis sizing in office-based tracheoesophageal puncture.

Authors
Sidell D, Shamouelian D, Eman A, Gerratt BR, Chhetri D.

Affiliation(s)
Division of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1624, USA.

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
Tracheoesophageal puncture (TEP) for postlaryngectomy speech is increasingly being performed as an office-based procedure. The authors review their experience with office-based TEP and compare outcomes with those of operating room-based TEP. The hypothesis was that office-based TEP results in improved prosthesis sizing, reducing the number of visits dedicated to prosthesis resizing.

Methods
A retrospective chart review was performed of all patients who underwent secondary TEP at the institution from 2001 to 2008, office-based or operating room-based. The primary dependent measure was the change in the length of the voice prosthesis. Also the number of visits made to the speech-language pathologist for adjustments before a stable prosthesis length was achieved was evaluated, and the number of days between voice prosthesis placement and the date a stable prosthesis length was observed.

Results
Thirty-one patients were included in this study. Eighteen patients underwent secondary OR-based TEP with secondary fitting 3-5 days later, and 13 patients underwent office-based secondary puncture with primary fitting. There was a significant difference in prosthesis length change between patients who had office-based TEP and patients who had operating room-based TEP (p < 0.001). In addition, the office-based cohort required fewer visits to the speech-language pathologist for TEP adjustments before a stable TEP length was achieved (p < 0.001).

Conclusions
Voice prosthesis sizing was better in patients who had office-based TEP with primary fitting than in patients who had operating room-based TEP with secondary fitting 3-5 days later. This outcome is likely due to the lesser degree of swelling of the tracheoesophageal party wall in the office-based procedure.
Brown et al., 2003

Title
Postlaryngectomy voice rehabilitation: state of the art at the millennium.

“[The immediate retrograde insertion of the voice prosthesis] saves a lot of time, as there is no longer any need to send the patient home for some days with a feeding tube, allowing rehabilitation to start on the day of surgery.”

Authors
Brown DH¹, Hilgers FJ², Irish JC¹, Balm AJ¹.

Affiliation(s)
¹The Wharton Head and Neck Center, Princess Margaret Hospital, University of Toronto, Canada; ²The Netherlands Cancer Institute, Amsterdam, The Netherlands

Journal and year of publication

Type of publication
Review

Summary
This article reviews postlaryngectomy voice rehabilitation with a historical background as well as the present state-of-the-art. With respect to primary versus secondary fitting of the voice prosthesis, the authors state that the advantages of primary puncture followed by primary fitting of the voice prosthesis are numerous, provided a device of sufficient length is used. The following pros and cons of primary fitting are listed:

Pros:
- The retrograde insertion technique diminishes the risk of separation of the tracheoesophageal wall.
- The tracheoesophageal wall is to some extent also stabilized by the voice prosthesis.
- The flanges of the voice prosthesis give protection against leakage of saliva and gastric reflux.
- The prosthesis causes less irritation of the stoma and the puncture than a feeding tube taped to the skin around the stomal area.
- No postoperative interference with a cannula or a heat and moisture exchanger.
- Patients can become familiar with maintenance of the voice prosthesis soon after operation.
- There is no need for early postoperative prosthesis fitting.
- At around the tenth postoperative day, there can be immediate focus on voicing itself, which can give a tremendous psychological boost to the patient.
- Postoperative radiotherapy is not contraindicated, and most patients have developed a useful voice before this treatment starts.
- The first replacement is usually months down the road, when wound healing is completed, surgical edema has subsided, and the patient is generally in much better physical and mental shape.
- Still allows a leading role of the speech therapist on the multidisciplinary rehabilitation team.

Cons:
- The presence of a feeding tube in the nose and throat for 10 days
- Temporary deterioration of the voice during postoperative radiotherapy.
Evaluation of TE puncture with primary voice prosthesis fitting

Evaluations show a low complication rate for primary TE puncture with primary voice prosthesis fitting. Results are similar for secondary TE puncture with primary fitting: high success rates, no significant immediate complications, no postoperative dislodgements, early voice acquisition, and no necessity for a subsequent fitting procedure.

As a result of the change toward primary voice prosthesis fitting in countries that traditionally used the secondary fitting technique (utilizing a catheter to stent the puncture until the voice prosthesis is fitted several days or weeks later), several publications have come out that have evaluated the technique of fitting a voice prosthesis immediately after creating the TE puncture. Initial and long-term success rates are reported to be high, speech is acquired early and the procedure is described as safe and effective. Intraoperative placement of the voice prosthesis after primary puncture in cases with free tissue reconstruction and salivary bypass tube has also found to be effective.

Until recently, immediate fitting of the voice prosthesis after tracheoesophageal puncturing required the availability of a separate guidewire, a special trocar and cannula, or another surgical instrument, which need sterilizing and regular sharpening. To allow easier and faster primary and secondary puncturing, the Provox Vega Puncture Set (PVPS) was developed and introduced in 2011. This PVPS, based on the Seldinger technique, is a fully disposable, sterile set of instruments for primary and secondary TE puncture and immediate voice prosthesis insertion. The PVPS proved itself to be a safe aid in the insertion of voice prostheses, allowing quick and easy insertion of the voice prosthesis with minimal tissue trauma, in the vast majority of cases without requiring additional instruments.

*N.B. Currently not available in the US.

The publications listed below all concern publications regarding the evaluation of TE puncture with primary voice prosthesis fitting that are referenced above. Clicking the link while holding the Ctrl key will take you directly to the summary you are interested in.

6Deschler et al. \textit{Simplified technique of tracheoesophageal prosthesis placement at the time of secondary tracheoesophageal puncture (TEP).} Laryngoscope. 2011 Sep;121(9):1855-9.

Bergeron et al, 2014

Title
Office-based tracheoesophageal puncture: updates in techniques and outcomes.

Authors
Bergeron JL¹, Jamal N², Erman A³, Chhetri DK⁴.

Affiliation(s)
¹Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA.
²Department of Otolaryngology-Head & Neck Surgery, Temple University School of Medicine, Philadelphia, PA, USA.
³Department of Audiology and Speech, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
⁴Department of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
Tracheoesophageal puncture (TEP) is an effective rehabilitation method for post-laryngectomy speech and has already been described as a procedure that is safely performed in the office. This study reviews long-term experience with office-based TEP with primary fitting over the past 7 years in the largest cohort published to date.

Subjects and Methods
A retrospective chart review was performed of all patients who underwent TEP by a single surgeon from 2005 through 2012, including office-based TEP with primary fitting and operating room TEP procedures with secondary fitting 3-5 days post-operative. Indications for the chosen technique (office versus operating room) and surgical outcomes were evaluated.

Results
Fifty-nine patients underwent 72 TEP procedures, with 55 performed in the outpatient setting and 17 performed in the operating room. There were no major complications in any of the office or operating room TEP procedures. The indications for performing TEPs in the operating room included 2 primary TEPs, 14 due to concomitant procedures requiring general anesthesia, and 1 due to failed attempt at office-based TEP. Nineteen patients with prior rotational or free flap reconstruction successfully underwent office-based TEP.

Conclusions
Primary TEP is at times preferred over secondary TEP, but it is not always feasible. Secondary TEP may be necessary, even in situations where primary TEP placement is performed. Secondary TEP in an office-based setting with immediate voice prosthesis placement continues to be a safe method of voice rehabilitation for post-laryngectomy patients, including those who have previously undergone free flap or rotational flap reconstruction.

Link to open access article
Atos Medical Clinical Evidence Series
Topic: Primary vs secondary voice prosthesis fitting

Damrose et al, 2014

Title
The hybrid tracheoesophageal puncture procedure: indications and outcomes.

"Concurrent tracheoesophageal puncture and voice prosthesis placement is a simple and efficent method of voice restoration in the laryngectomized patient,"

Authors
Damrose EJ1, Cho DY1, Goode RL1.

Affiliation(s)
1Division of Laryngology, Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
The aim of this report was to describe a novel and efficient method of tracheoesophageal puncture using a hybrid device assembled from 2 commercially available puncture kits: Atos Medical guidewire combined with InHealth Technologies dilator1. The authors aim to demonstrate the utility of this technique in the performance of primary and secondary TEP procedures, under general and local anesthesia, with and without flap reconstruction, and to evaluate the efficacy of concurrent puncture and valve placement. The procedure, including assembly of the hybrid device and concurrent puncture and valve placement, will be referred to as the Hybrid Tracheoesophageal Puncture Procedure (HTEPP).

Subjects and Methods
Thirty-four patients who underwent either primary or secondary tracheoesophageal puncture for voice restoration were included. Charts were reviewed retrospectively for complications, time to first valve change, operative time, and blood loss.

Results
Using this novel hybrid device, simultaneous puncture and valve placement was achieved in 34 consecutive patients. Three patients required multiple procedures. Therefore, a total of 38 HTEPPs was performed, 8 cases primary and 30 secondary. In all cases voice prosthesis placement was successful. There was 1 major complication and blood loss was negligible. Surgical time to create the puncture and place the prosthesis was on average 5.5 minutes (±1.5 minutes). All patients achieved tracheoesophageal voicing.

Conclusions
Concurrent tracheoesophageal puncture and voice prosthesis placement is a simple and efficient method of voice restoration in the laryngectomized patient and can be more easily accomplished with a hybrid device assembled from the components of 2 commercially available puncture kits (according to authors). It can be performed under local as well as general anesthesia. The procedure is adaptable to a variety of clinical situations.

1 This procedure is not recommended by Atos Medical.
Hilgers et al., 2013

Title
Development and (pre-) clinical assessment of a novel surgical tool for primary and secondary tracheoesophageal puncture with immediate voice prosthesis insertion, the Provox Vega Puncture Set.

"Participating surgeons rated appreciation, ease of use, time consumption and estimated surgical risks as better. The new PVPS appeared to be the preferred device by all participating surgeons."

Authors
Hilgers FJ1,2, Lorenz KJ3, Maier H3, Meeuwis CA4, Kerrebijn JD4, van der Poorten V5, Vinck AS6, Quer M6, van den Brekel MW1,2.

Affiliation(s)
1The Netherlands Cancer Institute, Amsterdam, The Netherlands; 2Institute for Phonetic Sciences, and Academic Medical Center, University of Amsterdam, The Netherlands; 3German Armed Forces Hospital, Ulm, Germany; 4Eramsus University Medical Center, Rotterdam, The Netherlands; 5University Hospital Leuven, Leuven, Belgium; 6Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain

Journal and year of publication

Type of publication
Prospective study

Introduction
Development and (pre-) clinical assessment were performed of a novel surgical tool for primary and secondary tracheoesophageal puncture (TEP) with immediate voice prosthesis (VP) insertion in laryngectomized patients, the Provox Vega Puncture Set (PVPS). After preclinical assessment in fresh frozen cadavers, a multicenter prospective clinical feasibility study in two stages was performed.

Subjects and Methods
Stage-1 included 20 patients, and stage-2 27. Based on observations in stage-1, the PVPS was re-designed (decrease in diameter of the dilator from 23.5 to 18 Fr.) and further used in stage-2. Primary outcome measure was immediate VP insertion without requiring additional instruments. Secondary outcome measures for comparison of the new with the traditional TEP procedure were: appreciation, ease of use, time consumption, estimated surgical risks and overall preference. A mini-max two-stage study design was used to establish the required sample size.

Results
In stage-1, dilatation forces were considered too high in patients with a fibrotic TE wall. With the final thinner version of the PVPS, Provox Vega voice prostheses were successfully inserted into the TE puncture in 'one-go' in 24/27 (89%) of the procedures: 20 primary and 7 secondary. Participating surgeons rated appreciation, ease of use, time consumption and estimated surgical risks as better. Related adverse events were few and minor. The new PVPS appeared to be the preferred device by all participating surgeons.
Conclusion
This study shows that the novel, disposable PVPS is a useful TE puncture instrument allowing quick and easy insertion of the voice prosthesis in the vast majority of cases. It allows for immediate insertion of the VP in almost 90% of the cases without requiring additional instruments. There was a high degree of satisfaction with the PVPS and a substantial preference over the traditional Provox trocar and cannula method by the participating surgeons. The PVPS can lower the threshold for those surgeons, who still delay the VP insertion after stenting the TEP tract with a catheter.

Link to open access article
Lorenz et al, 2013

Title
[A novel puncture instrument: the Provox-Vega® puncture set: Its use in voice prosthesis insertion following laryngectomy.] [Article in German]

“The Provox Vega Puncture Set proved itself to be a safe aid in the insertion of voice prostheses. It is significantly easier to use than other systems and tissue trauma is minimal”

Authors
Lorenz KJ1, Hilgers FM², Maier H³.

Affiliation(s)
1German Armed Forces Hospital, Ulm, Germany; 2The Netherlands Cancer Institute, Amsterdam, The Netherlands; 3Institute for Phonetic Sciences, and Academic Medical Center, University of Amsterdam, The Netherlands

Journal and year of publication

Type of publication
Prospective study

Introduction
The use of voice prostheses has been considered the gold standard in voice rehabilitation following laryngectomy for the last 20 years. Insertion is generally performed as a primary procedure during laryngectomy or as a secondary procedure with a re-usable trocar or rigid esophagoscope, a guidewire and anatomic hemostatic forceps. The use of these instruments requires a certain level of experience on the one hand, while on the other use of a trocar and subsequent manipulation with the hemostatic forceps can lead to tissue trauma around the membranous wall or damage to the voice prosthesis. This publication presents the results of a phase I/II study using a novel atraumatic puncture set for primary and secondary tracheoesophageal puncture with immediate insertion of voice prostheses.

Subjects and Methods
Once patients had been fully informed and given their consent, the Provox-Vega® puncture set was used in 21 patients in either a primary (16) or a secondary (5) procedure. All procedures were documented on video, while approach, complications and surgical success were recorded using a questionnaire.

Results
The average surgical time was 83.5 (±19.12) seconds for primary puncture with voice prosthesis insertion and 212.57 (±93.03) seconds in secondary procedures. The prosthesis could be inserted without complication in 19 patients, while a longer prosthesis needed to be selected intraoperatively in two patients due to a thick membranous wall. No serious complications were observed. One patient incurred a discrete injury to the mucosa of the esophageal posterior wall.

Conclusion
The ProvoxVega® Puncture Set proved itself to be a safe aid in the insertion of voice prostheses. It is significantly easier to use than other systems and tissue trauma is minimal. This new puncture system is easy to learn and, in most cases, no further instruments were required. Compared to the conventional method, it was preferred by all surgeons. The Provox-Vega Puncture Set could increase the acceptance of prosthetic voice rehabilitation after laryngectomy and make this procedure of voice rehabilitation available to more patients.
Divi et al, 2011

Title
Primary TEP placement in patients with laryngopharyngeal free tissue reconstruction and salivary bypass tube placement.

Authors
Divi V, Lin D T, Emerick K, Rocco J, and Deschler DG.

Affiliation(s)
Department of Otology and Laryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA.

Journal and year of publication

Type of publication
Prospective study

Introduction
The authors examined the feasibility and advantages of primary tracheoesophageal puncture (TEP) with intraoperative placement of the voice prosthesis for patients undergoing laryngopharyngectomy requiring free tissue reconstruction and salivary bypass tube placement.

Subjects and Methods
Six patients were identified; 4 underwent total laryngopharyngectomy, and 2 underwent total laryngectomy with partial pharyngectomy. All 6 required free tissue reconstruction, and a salivary bypass tube was placed in all cases. All patients had a 20F Indwelling Blom-Singer prosthesis placed.

Results
No complications were noted with intraoperative prosthesis placement. No prostheses were dislodged in the postoperative period. Three of 6 patients had initial success with tracheoesophageal voice production. One patient required removal of the TEP postoperatively for feeding tube placement. The prosthesis was replaced 1 month later with good voice restoration. Two patients died from disease prior to voice acquisition. At 6 months, 4 patients available for evaluation had successful voice outcomes, and 3 were disease free.

Conclusion
Primary TEP is favorable to secondary puncture, even with pharyngeal reconstruction. It also allows for earlier voice restoration, with overall an excellent success rate for good voice production. There were no adverse outcomes related to early placement of the prosthesis. Although the patient cohort is small, this study demonstrates that primary placement of a TEP prosthesis is feasible in patients undergoing laryngopharyngectomy with free flap reconstruction with salivary bypass tube placement and affords distinct advantages to traditional catheter placement.
Deschler et al, 2011

Title
Simplified technique of tracheoesophageal prosthesis placement at the time of secondary tracheoesophageal puncture (TEP).

“Primary prosthesis placement at the time of secondary TE puncture is a successful option for surgical voice restoration with […] and minimal complications.”

Authors
Deschler DG, Emerick KS, Lin DT, Bunting GW.

Affiliation(s)
Massachusetts Eye and Ear Infirmary, Division of Head and Neck Surgery, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA.

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
In the author’s institution, secondary tracheoesophageal (TE) puncture standardly involves placement of a catheter at time of TE puncture creation. They explore the feasibility of placement of the prosthesis at the time of TE puncture (TEP) obviating the need for a subsequent procedure to place the prosthesis. The technique is described and the success and potential advantages are evaluated.

Subjects and Methods
Retrospective chart review of consecutive patients who underwent TE prosthesis placement at the time of secondary TEP from March 2009 to January 2011. Fourteen patients underwent the primary TE prosthesis placement at the time of secondary puncture and were evaluated. Assessed outcomes included patient demographics, success of prosthesis placement, need for repeat procedure, early or late prosthesis dislodgement, complications, and specific voice outcomes.

Results
Patient cohort included nine males, five females, with average age of 64 years. All TE prosthesis placements were successful. The 12-mm 20 F Blom-Singer Indwelling prosthesis was used in all cases. No complications occurred during prosthesis placement. Two perioperative complications occurred: one case of transient pulmonary edema from general anesthesia, one case of posterior tracheal wall swelling. The second was addressed with placement of a larger prosthesis. All patients successfully achieved good voice at an average of 4 days after the procedure (range: 1-9 days).

Conclusion
This initial series of 14 consecutive patients demonstrates that primary placement of the tracheoesophageal voice prosthesis at the time of secondary TE puncture is safe, effective and reproducible. Functional voice was achieved in all patients with no significant immediate complications. No dislodgements occurred and no repeat procedures were required. Voice acquisition was achieved at an earlier time (4 days on average) than with traditional techniques and without the necessity of a subsequent procedure. Primary prosthesis placement at the time of secondary TE puncture is a successful option for surgical voice restoration with distinct advantages and minimal complications.
Gultekin et al, 2010

Title
Effects of neck dissection and radiotherapy on short-term speech success in voice prosthesis restoration patients.

No complications were noted with intraoperative prosthesis placement. No prostheses were dislodged in the postoperative period.

Authors
Gultekin E, Yelken K, Garcia MF, Develioglu ON, Kulekci M.

Affiliation(s)
1Department of Otolaryngology, Namik Kemal University Medicine Faculty, Tekirdag, Turkey;
2Department of Otolaryngology, Gaziyamanpasa University Medicine Faculty, Tokat, Turkey;
3Department of Otolaryngology, Van Education and Research Hospital, Van, Turkey;
4Department of Otolaryngology, Taksim Education and Research Hospital, Istanbul, Turkey

Journal and year of publication

Type of publication
Prospective study

Introduction
This study aimed to compare the short-term speech success of voice prosthesis (VP) among patients who underwent total laryngectomy or total laryngectomy in combination with neck dissection and those who received postoperative radiotherapy.

Subjects and Methods
Thirty-two male were included. Nine underwent total laryngectomy and 23 underwent total laryngectomy combined with neck dissection, and 17 of the 23 with neck dissection received postoperative radiotherapy. All patients had intraoperative placement of a Provox voice prosthesis completed in conjunction with the total laryngectomy. Patients’ speech success was perceptually evaluated 3-4 weeks after the surgery and 3-4 weeks after the cessation of radiotherapy, using a 1-3 scale (1=failure to develop speech (aphonia); 2=communicate with short phrases only; and 3=communicate with fluency and long sentences).

Results
No complications were noted with intraoperative prosthesis placement. No prostheses were dislodged in the postoperative period. Eighteen of 32 patients (56%) demonstrated successful speech. Nine patients (28%) demonstrated less successful speech. Five patients (16%) were found to be aphonie.

Conclusion
Neck dissection and postoperative radiotherapy have no significant influence on short-term speech success in voice prosthesis restoration patients. Primary TEP with intraoperative placement of a voice prosthesis should be preferred in patients who have a laryngectomy in combination with neck dissection and/or will have postoperative radiation therapy. It provides early and successful voice restoration in the majority of the patients without interfering with radiation treatment and avoids a second surgical intervention.
Deschler et al, 2009

Title
Evaluation of voice prosthesis placement at the time of primary tracheoesophageal puncture with total laryngectomy.

"[A] voice prosthesis can be safely and effectively placed intraoperatively at the time of primary TEP and laryngectomy. Initial voice acquisition rates were high and long-term success was well within the acceptable range."

Authors
Deschler DG, Bunting GW, Lin DT, Emerick K, Rocco J.

Affiliation(s)
Massachusetts Eye and Ear Infirmary, Division of Head and Neck Surgery, Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts, USA.

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
Primary tracheoesophageal puncture (TEP) is a well-described and accepted method of surgical voice restoration and is in the author’s institution standardly completed with a catheter placement intraoperatively, which is replaced with a prosthesis at a later date. This study evaluates the intraoperative placement of the voice prosthesis at the time of the primary TEP in an effort to understand the potential advantages and disadvantages of voice prosthesis placement at the time of primary TEP completed in conjunction with total laryngectomy.

Subjects and Method
After approval by the institutional review board of the Massachusetts Eye and Ear Infirmary, a retrospective chart review was completed of all cases of primary tracheoesophageal prosthesis placement completed in conjunction with primary tracheoesophageal puncture performed at the time of total laryngectomy.

Results
Thirty patients were identified, 29 of whom underwent laryngectomy for advanced laryngeal carcinoma. Twenty-eight of 29 patients received preoperative full-dose radiation therapy. Twenty-nine of 30 patients had a 20Fr Classic Indwelling Blom-Singer voice prosthesis. One had placement of 16F Indwelling Blom-Singer prosthesis. No complications were noted with intraoperative prosthesis placement. No prostheses were dislodged in the postoperative period. Twenty-nine of 30 subjects had initial success with tracheoesophageal voice production. At 1-year follow-up, 23/30 subjects (77%) had successful voice restoration. Five failed because of recurrent disease, one subject never achieved successful voice, and one subject wanted the prosthesis removed although successful voice was achieved. Twenty-three of 25 (92%) disease-free subjects had functional voice restoration at 1-year post-total laryngectomy and primary prosthesis placement.

Conclusion
This study demonstrates that the voice prosthesis can be safely and effectively placed intraoperatively at the time of primary TEP and laryngectomy. Initial voice acquisition rates were high and long-term success was well within the acceptable range.
Several published studies, including one comparative study, seem to indicate that primary fitting of the voice prosthesis, in comparison to secondary fitting, may be associated with a more stable tracheoesophageal puncture, requiring less frequent resizing of the voice prosthesis.

Data concerning device life and size changes of the first device placed fitted primarily show that the device life of the first device placed, is generally longer than that of subsequent ‘routine’ replacements (average 180 days vs 137 days)\(^4,5\), and that reasons for replacement of the first device do not differ from those for subsequent devices\(^6\).

In the long-term, the majority of devices fitted primarily are replaced due to leakage through the device\(^3,4,6\), whereas size changes account for 11%-12% of the changes\(^3,6\), in about 31% of the patients\(^6\).

Data from studies carried out in patients that underwent secondary fitting show a different pattern. It is reported that frequent size changes occur in the first few postoperative months\(^1\), and that also in the long-term multiple resizings are needed in about 90% of the routinely followed patients\(^1,7\).

One study compared in-office TEP (with primary placement of the voice prosthesis) with operating room-based TEP (with placement of a catheter and delayed voice prosthesis fitting). The results showed that office-based TEP with primary fitting of the voice prosthesis was associated with significantly less change in length of the device, and significantly fewer SLP visit for adjustment of voice prosthesis length\(^2\).
Lundy et al., 2012

Title
Longitudinal Tracheoesophageal Puncture Size Stability.

“All patients had a red rubber catheter placed at the time of puncture [...]. Prosthesis size was stable in only 5 (10%) patients and unstable in 45 (90%).”

Authors
Lundy DS, Landera MA, Bremekamp J, Weed D.

Affiliation(s)
Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, USA.

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
The purpose of this study was to investigate prosthesis size stability over time and determine which factors influenced the need for changes in size.

Subjects and Methods
Retrospective chart review was performed on all individuals who had previously undergone total laryngectomy and tracheoesophageal puncture and had a minimum of 3 years of consistent and consecutive follow-up data after their prosthesis was initially placed. All prostheses were fitted secondarily. The data from the first 3 months after the puncture were omitted because of “natural evolution of the fistula tract with wound healing that would be expected to result in prosthesis length and/or diameter changes”. Data reviewed included demographic variables of age at time of tracheoesophageal puncture, ethnicity, and sex.

Results
Fifty patients were included, with a mean age of 64.7 years (range, 43-86 years), 41 (82%) men and 9 (18%) women. Surgical management was equally divided between those who underwent total laryngectomy (n = 25) as primary treatment vs those who had salvage laryngectomy (n = 25) for persistent or recurrent disease. Prosthesis size was stable, with no change in diameter or length, in only 5 (10%) patients and unstable in 45 (90%), as they were changed at least once. Analysis of the number of changes over time revealed a range of 1-25, with an average of 5.5 changes required during the first 3 follow-up years. Group inspection of the 5 patients with a stable puncture revealed that all underwent secondary puncture, tended to be older and had their laryngectomy as a primary treatment. The only factor that demonstrated statistical significance was sex (Fisher exact test = 0.035), with women being more likely to have a stable prosthesis size over time.

Conclusions
The results of this study show that 90% of patients who underwent total laryngectomy and tracheoesophageal puncture with secondary fitting of a voice prosthesis required a change in their prosthesis size beyond the first 3 months of expected healing. On average 5.5 changes were required during the first 3 years following the 3 months healing period. The authors conclude that these results support the need for continual reassessment of the TE puncture when changing the prosthesis to ensure appropriate fit.
Sidell et al, 2010

Title
Improved tracheoesophageal prosthesis sizing in office-based tracheoesophageal puncture.

Voice prosthesis sizing was better in patients who had office-based TEP [with primary VP fitting] than in patients who had operating room-based TEP [with catheter placement and delayed VP fitting].

Authors
Sidell D, Shamouelian D, Erman A, Gerratt BR, Chhetri D.

Affiliation(s)
Division of Head and Neck Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095-1624, USA.

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
Tracheoesophageal puncture (TEP) for postlaryngectomy speech is increasingly being performed as an office-based procedure. The experience with office-based TEP was reviewed and outcomes were compared with those of operating room-based TEP. The hypothesis was that office-based TEP results in improved prosthesis sizing, reducing the number of visits dedicated to prosthesis resizing.

Methods
A retrospective chart review was performed of all patients who underwent secondary TEP from 2001 to 2008. The primary dependent measure was the change in the length of the voice prosthesis. The authors also evaluated the number of visits made to the speech-language pathologist for resizing before a stable prosthesis length was achieved, and the number of days between voice prosthesis placement and the date a stable prosthesis length was observed.

Results
Thirty-one patients were included in this study. Eighteen patients underwent secondary OR-based TEP, and 13 patients underwent office-based TEP. There was a significant difference in prosthesis length change between patients who had office-based TEP (5/13) and patients who had operating room-based TEP (16/18) (p < 0.001). In addition, the office-based cohort required fewer visits to the speech-language pathologist for TEP adjustments before a stable TEP length was achieved (p < 0.001).

Conclusions
Voice prosthesis sizing was better in patients who had office-based TEP with primary fitting of a voice prosthesis than in patients who had operating room-based TEP with secondary fitting. This outcome is likely due to the lesser degree of swelling of the tracheoesophageal party wall in the office-based procedure.
Mäkitie et al, 2003

Title
Postlaryngectomy voice restoration using a voice prosthesis: a single institution's ten-year experience.

“...the Provox prosthesis is an effective method of postlaryngectomy voice rehabilitation, and it continues to be the preferred method of voice restoration...”

Authors

Affiliation(s)
Department of Otolaryngology-Head and Neck Surgery, Helsinki University Central Hospital, Helsinki, Finland.

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
This article describes the speech rehabilitation outcome of patients treated with total laryngectomy or total laryngopharyngectomy, who underwent primary or secondary TE puncture with immediate placement of a Provox voice prosthesis.

Subjects and Methods
A retrospective chart review was performed of 95 patients (88 men and 7 women; mean age, 63.5 years) who underwent TE puncture in the period 1992 to 2002. Eighty-one percent (77/95) of the patients underwent a primary TE puncture and 19% (18/95) underwent secondary TE puncture. All prostheses were placed primarily, immediately after the TE puncture was created.

Results
Long-term TE speech was rated as good or average for 78% (74/95) of the patients. The main causes for replacement of the device were device related: obstruction in 14.2% and leakage through in 51.8%. A total of 12.4% of the replacements was carried out due to the need for a size change.

Conclusion
The authors conclude that use of the Provox prosthesis is an effective method of postlaryngectomy voice rehabilitation, and it continues to be their preferred method of voice restoration in the majority of cases.
Elving et al, 2002

Title
The influence of radiotherapy on the lifetime of silicone rubber voice prostheses in laryngectomized patients.

“The first [voice prosthesis], placed during surgery, lasted longer than subsequent devices.”

Authors
Elving GJ, van Weissenbruch R, Busscher HJ, Van der Mei HC, Albers, FW.

Affiliation(s)
1Department of Biomedical Engineering, University of Groningen; 2Department of Otorhinolaryngology, University of Groningen, The Netherlands.

Journal and year of publication
Laryngoscope. 2002 112(9), 1680-1683.

Type of publication
Retrospective analysis

Introduction
The aim of the study was to investigate the relationship between voice prosthetic lifetime in laryngectomized patients and the irradiation dose applied to the neck node levels (field of the neck) in which the major salivary glands are partially included. Furthermore, a possible relationship between voice prosthetic lifetime and the irradiation dose applied to the primary tumor site was studied.

Subjects and Methods
The records of 101 patients who underwent total laryngectomy between January 1993 and November 1999 at the Department of Otorhinolaryngology, University Hospital Groningen, The Netherlands, were analyzed. Patients used either a Groningen, Provox, or Provox2 voice prosthesis that was placed at the time of surgery. Follow-up was 1 – 106 months, average 26 months. A total of 685 voice replacements took place, 377 Groningen voice prostheses, 296 Provox2, and 12 Provox1 (the latter left out of the analyses due to the small number). The following parameters were obtained: age, sex, radiotherapy, radiation fields, irradiation dose per field, tumor site, TNM classification, and valve insertion.

Results
Irradiation to extensive neck fields, including the submandibular glands, did not influence the voice prosthetic lifetime after laryngectomy. However, primary tumor doses exceeding 60 Gray significantly shortened the mean voice prosthetic lifetime per patient. Interestingly, the device life of the first Groningen device, placed during surgery, was significantly longer (average 180 days) than the average device life of subsequent Groningen devices (average 137 days). The average lifetime of the Provox 2 voice prosthesis was 90 days, which presents no statistically significant difference with the Groningen button voice prosthesis, provided that the first Groningen button voice prosthesis, as used by all patients, are excluded from the analysis.

Conclusion
This study identified an association between radiation on the primary tumor site with a dose equal to, or more than 60 Gray and limited lifetimes of voice prostheses. The first device, placed during surgery, lasted longer than subsequent devices.
Schäfer et al, 2001

Title
[Voice restoration with voice prosthesis after total laryngectomy. Assessment of survival time of 378 Provox-1, Provox-2 and Blom-Singer voice prosthesis].

Authors
Schäfer P, Klützke N, Schwerdtfeger FP.

Affiliation(s)
Klinik fur HNO-Krankheiten, Kopf-Hals- und Plastische Gesichtschirurgie, Kommunikationsstörungen, Krankenanstalt Mutterhaus der Borromaerinnen, Trier, Germany

Journal and year of publication

Type of publication
Retrospective study

Introduction
Indwelling voice prostheses are used in Trier for voice restoration after total laryngectomy since 1991.

Subjects and Methods
To assess the voice prosthesis survival times the patients of the years 1993-1999 are assessed retrospectively. 58 patients provided with indwelling voice prosthesis were seen regularly at follow-up. 378 prostheses were changed. Provox 1 (n=136), Provox 2 (n=78) and Blom-Singer-Prostheses (n=172) were used. 37 prostheses were primary inserted during surgery, 21 secondary. Until 1995 they were replaced by a Provox 1, since 1995 by a Blom-Singer, and since 1998 by a Provox 2-prosthesis.

Results
The average survival lifetime of the prosthesis was 224 days for Provox-1, 96 days for Provox-2 and 107 days for Blom-Singer respectively. There is no significant difference found between Provox-2 and Blom-Singer-Prosthesis. The survival time of the Provox-1 Prosthesis is significant longer. Further analyses showed that the first voice prosthesis had an average survival lifetime of 267 days, the following prostheses 197 days (p=0.06).

Conclusion
Using indwelling voice prosthesis for voice restoration after total laryngectomy an average survival time of the prosthesis of three months can be expected. The first voice prosthesis placed had a significantly longer device life than the following prostheses. There are relevant individual differences. Provox-1 Prostheses (mostly the first inserted device) have a significantly longer survival time, but as they are more difficult to handle they are not suitable for routine use. The indication for the choice between Blom-Singer or Provox-2 Prosthesis should be influenced by the surgeons' experience.
Op de Coul et al, 2000

Title
A decade of postlaryngectomy vocal rehabilitation in 318 patients: a single Institution’s experience with consistent application of Provox indwelling voice prostheses.

“...the device life of the first device was longer than that of subsequently placed devices. [...] Overall, 65% of the devices were replaced with a device of the same size.”

Authors
Op de Coul BM1,2, Hilgers FJ1, Balm AJ1, Tan IB1, van den Hoogen FJ2, van Tinteren H3.

Affiliation(s)
1Department of Otolaryngology, the Netherlands Cancer Institute, Amsterdam; 2Department of Otolaryngology, University Hospital St Radboud, Nijmegen; 3Department of Biometrics, the Netherlands Cancer Institute, Amsterdam, The Netherlands

Journal and year of publication

Type of publication
Retrospective chart review

Introduction
This study aimed to assess long-term results with consistent use of indwelling voice prostheses (Provox and Provox2) for vocal rehabilitation after total laryngectomy.

Subjects and Methods
Three hundred eighteen patients were included, covering the time period November 1988 - May 1999. Overall 2700 voice prosthesis replacements were reviewed. Outcome measures were device lifetime, indications for replacement, adverse events, and voice quality. All initial devices were fitted primarily.

Results
Median patient-device follow-up was 67 months. Mean actuarial device lifetime for all indications for replacement was 163 days (median, 89 days). Main indications for replacement were device-related (leakage through (73%) and obstruction (4%)) or fistula-related (leakage around (13%), and hypertrophy and/or infection of the fistula (7%)). Overall, 64% of the devices were replaced with a device of the same size. Downsizing for leakage around occurred in 10% of the replacements (24% of the patients), and resizing due to inaccurate size of the device in situ occurred in 1% of the replacements (7% of the patients). Clinical factors for increased device lifetime were no radiotherapy (P =.03), and older than 70 years (P<.02). Success rate with respect to voice quality was 88%, which was significantly influenced by the extent of surgery (P<.001). The reasons for replacement did not differ between the first device placed after surgery or subsequent devices.

Note: Additional analyses showed that the device life of the first device was longer than that of subsequently ones (median 135 days). Also, there was no evidence of early replacement due to reduced length of the puncture tract. (Hilgers et al. Prosthetic voice rehabilitation at the Netherlands Cancer Institute, Global Postlaryngectomy Rehabilitation Academy, Amsterdam, the Netherlands).
Conclusion
The consistent use of indwelling voice prostheses shows a high success rate of prosthetic vocal rehabilitation, in terms of the percentage of long-term users (95%), and of a fair-to-excellent voice quality (88% of patients). The most common reason for replacement was leakage through the device in 73% of the replacements, in 73% of the patients. Size changes only occurred in 31% of the patients.
Leder and Sasaki, 1995

Title
Incidence, timing, and importance of tracheoesophageal prosthesis resizing for successful tracheoesophageal speech production.

“In general, all patients [that underwent a secondary placement with stenting with a red rubber catheter] require a size change within the first month after fitting the voice prosthesis.”

Authors
Leder SB and Sasaki CT.

Affiliation(s)
Yale University School of Medicine, Section of Otolaryngology, New Haven, CT 06504, USA.

Journal and year of publication
Laryngoscope 1995 105(8 Pt 1), 827-832.

Type of publication
Retrospective study

Introduction
This retrospective study was undertaken to determine the incidence and timing of TE prosthesis resizing, amount of change in prosthesis length, etiologies associated with resizing, and importance of long-term professional follow-up for maintenance of successful TE speech production.

Subjects and Methods
Participants were 26 individuals with total laryngectomy and secondary TE puncture with catheter placement and delayed fitting of the voice prosthesis.

Results
Results indicated that all 18 participants available for long-term follow-up required TE prosthesis resizing of the initial device, and multiple resizings were required in 87% of the routinely followed participants. In 14 participants the prostheses were resized shorter (mean = -0.7 cm); in 3, longer (mean = +0.5 cm); and in 1, from a duckbill to a low-pressure prosthesis of the same size. The mean number of days from initial measurement and fitting to first prosthesis resizing was 26.

Conclusion
In this group of patients undergoing secondary puncture with catheter placement and delayed fitting of the voice prosthesis, multiple resizings were required, starting on average 26 days after the first fitting. In general, all patients require a size change within the first month after fitting the voice prosthesis.